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Abstract

A postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate with piezo-
electric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field con-
sidered is assumed to be of uniform distribution over the plate surface and through the plate thickness and the electric field
considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs)
are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume
fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be tem-
perature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes
thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-
plane boundary conditions are considered. A two step perturbation technique is employed to determine buckling loads
and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imper-
fect, geometrically mid-plane symmetric FGM plates with fully covered or embedded piezoelectric actuators under dif-
ferent sets of thermal and electric loading conditions. The effects played by temperature rise, volume fraction distribution,
applied voltage, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are microscopically inhomogeneous composites usually made
from a mixture of metals and ceramics. By gradually varying the volume fraction of constituent materials,
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their material properties exhibit a smooth and continuous change from one surface to another, thus elim-
inating interface problems and mitigating thermal stress concentrations. FGMs are now developed for gen-
eral use as structural components in extremely high temperature environments. Another recent advance in
material and structural engineering is in the field of smart structures which incorporates adaptive materials.
Therefore, hybrid plate structures where a substrate made of FGMs is coupled with surface-bonded piezo-
electric actuator and/or sensor layers have become increasingly important.
Many buckling studies for FGM plates subjected to mechanical or thermal loading are available in the

literature, see, for example, Javaheri and Eslami (2002a,b,c), Najafizadeh and Eslami (2002a,b), Ma and
Wang (2003a,b), and Wu (2004). It has been pointed out in Shen (2002), the governing differential equa-
tions for an FGM plate are identical in form to those of unsymmetric cross-ply laminated plates, and apply-
ing in-plane compressive loads to such plates will cause bending curvature to appear. Consequently, one
wonders whether it is even possible to have a classical, bifurcation buckling problem for such FGM plates,
and whether the existing solutions are really correct.
Leissa (1986), and Qatu and Leissa (1993) have proved that buckling may always occur for symmetric

laminated plates with arbitrary in-plane loading and boundary conditions. It was also proved that for
unsymmetric cross-ply laminated plates with all four edges simply supported the bifurcation buckling
did not exist due to the stretching/bending coupling effect. Therefore, the buckling solutions obtained by
Javaheri and Eslami (2002a,b,c) and Wu (2004) for simply supported FGM plates subjected to uniaxial
compression and/or thermal loads may be incorrect.
Birman (1995) made the first attempt to solve the buckling problem of functionally graded hybrid com-

posite plates. Feldman and Aboudi (1997) studied the buckling of composite plates with functionally
graded distribution of reinforcement volume fraction. Note that in Birman (1995) and Feldman and Abo-
udi (1997) FGM has a different meaning, and they only investigated the mid-plane symmetric composite
plates for which the stretching/bending coupling vanishes. Recently, Yang and Shen (2003) studied the
postbuckling behavior of FGM thin plates under fully clamped boundary conditions. More recently, Liew
et al. (2003) studied compressive postbuckling and thermal postbuckling behavior of FGM plates with two
opposite edges clamped and with surface-bonded piezoelectric actuators. In Yang and Shen (2003) and
Liew et al. (2003) they pointed out that the FGM plates with simply supported edges, even for the
FGM hybrid plate which are not fully clamped, have no bifurcation solution.
The present paper extends the previous works (Shen, 2001, 2002) to the case of mid-plane symmetric

FGM hybrid plates subjected to the combined action of mechanical, electrical and thermal loads. The
temperature field considered is assumed to be of uniform distribution over the plate surface and through
the plate thickness and the electric field considered only has non-zero-valued component EZ. The material
properties of FGMs are assumed to be graded in thickness direction according to a volume fraction
power law distribution and expressed as a nonlinear function of temperature, whereas the material prop-
erties of piezoelectric layers are expressed as a linear function of temperature. The governing equations of
the plate are based on Reddy�s higher order shear deformation plate theory that includes thermo-
piezoelectric effects (Reddy, 1999). All four edges of the plate are assumed to be simply supported, and
two cases of the in-plane boundary conditions are considered. A two step perturbation technique is
employed to determine buckling loads and postbuckling equilibrium paths. The initial geometric imper-
fection of the plate is taken into account but, for simplicity, its form is assumed to be the same as the
initial buckling mode of the plate.
2. Theoretical development

We are now in a position to consider two types of hybrid laminated plate, referred to as (P/FGM)S and
(FGM/P)S, which consists of four plies and is mid-plane symmetric, as shown in Fig. 1. The length, width



Fig. 1. Configurations of two types of hybrid laminated plates. (a) (P/FGM)S and (b) (FGM/P)S plate.
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and total thickness of the hybrid laminated plate are a, b and t. The thickness of the FGM layer is tf, while
the thickness of the piezoelectric layer is tp. The plate is assumed to be geometrically imperfect, and is sub-
jected to a compressive edge load in the X-direction combined with thermal and electric loads. As usual, the
coordinate system has its origin at the corner of the plate on the mid-plane. Let U , V and W be the plate
displacements parallel to a right-hand set of axes (X, Y, Z), where X is longitudinal and Z is perpendicular
to the plate. Wx and Wy are the mid-plane rotations of the normals about the Y and X axes, respectively.
Denoting the initial geometric imperfection by W

�ðX ; Y Þ, let W ðX ; Y Þ be the additional deflection and
F ðX ; Y Þ be the stress function for the stress resultants defined by Nx ¼ F ;yy , Ny ¼ F ;xx and Nxy ¼ �F ;xy ,
where a comma denotes partial differentiation with respect to the corresponding coordinates.
The substrate FGM layer is made from a mixture of ceramics and metals, the mixing ratio of which is

varied continuously and smoothly in the Z direction, so that the effective material properties Pf (Young�s
modulus Ef or thermal expansion coefficient af) can be expressed as
P f ¼ P cV c þ PmV m ð1Þ
where Pc and Pm denote the temperature-dependent properties of the ceramic and metal, respectively, and
Vc and Vm are the ceramic and metal volume fractions and are related by
V c þ V m ¼ 1 ð2Þ
The volume fraction Vm follows a simple power law
V m ¼ Z � t1
t2 � t1

� �N

ð3Þ
where the volume fraction index N dictates the material variation profile through the FGM layer thickness.
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It is assumed that the effective Young�s modulus Ef and thermal expansion coefficient af of the FGM
layer are of temperature-dependent, whereas Poisson�s ratio mf depends weakly on temperature change
and is assumed to be a constant. From Eqs. (1)–(3), one has
Ef ¼ ðEm � EcÞ
Z � t1
t2 � t1

� �N

þ Ec; af ¼ ðam � acÞ
Z � t1
t2 � t1

� �N

þ ac ð4Þ
It is evident that when Z = t1, Ef = Ec and af = ac, and when Z = t2, Ef = Em and af = am. Furthermore,
Ef and af are both temperature and position dependent.
Reddy (1984a,b) developed a simple higher order shear deformation plate theory, in which the transverse

shear strains are assumed to be parabolically distributed across the plate thickness and which contains the
same dependent unknowns as in the first-order shear deformation theory, and no shear correction factors
are required. Based on Reddy�s higher order shear deformation theory with a von Kármán-type of kine-
matic nonlinearity and including thermo-piezoelectric effects, the governing differential equations for an
FGM plate with fully covered piezoelectric actuators can be derived in terms of a stress function F , two
rotations Wx and Wy , and a transverse displacement W , along with the initial geometric imperfection W

�
.

They are
eL11ðW Þ � eL12ðWxÞ � eL13ðWyÞ þ eL14ðF Þ � eL15ðNpÞ � eL16ðMpÞ ¼ eLðW þ W �
; F Þ ð5Þ

eL21ðF Þ þ eL22ðWxÞ þ eL23ðWyÞ � eL24ðW Þ � eL25ðNpÞ ¼ � 1
2
LðW þ 2W �

;W Þ ð6Þ

eL31ðW Þ þ eL32ðWxÞ � eL33ðWyÞ þ eL34ðF Þ � eL35ðNpÞ � eL36ðSpÞ ¼ 0 ð7Þ

eL41ðW Þ � eL42ðWxÞ þ eL43ðWyÞ þ eL44ðF Þ � eL45ðNpÞ � eL46ðSpÞ ¼ 0 ð8Þ
where
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and the other linear operators eLijð Þ and the nonlinear operator eLð Þ are defined as in Shen (2002).
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In the above equations, the equivalent thermo-piezoelectric loads are defined by
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where N
T
, M
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, P

T
and N

E
, M

E
, P

E
are the forces, moments and higher order moments caused by the ele-

vated temperature and electric field, respectively.
The temperature field is assumed to be uniformly distributed over the plate surface and through the plate

thickness.
For the plate type piezoelectric material, only the transverse direction electric field component EZ is

dominant, and EZ is defined as EZ = �U,Z, where U is the potential field. If the voltage applied to the actu-
ator is in the thickness only, then
EZ ¼
V k
tp

ð11Þ
where Vk is the applied voltage across the kth ply.
The forces and moments caused by elevated temperature or electric field are defined by
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where a11 and a22 are the thermal expansion coefficients measured in the longitudinal and transverse direc-
tions, respectively, d31 and d32 are the piezoelectric strain constants of a single ply, and Qij are the trans-
formed elastic constants, details of which can be found in Reddy (1984a,b). Note that for an FGM
layer, a11 = a22 = af is given in detail in Eq. (4), and Qij ¼ Qij in which
Q11 ¼ Q22 ¼
Ef

1� m2f
; Q12 ¼

mfEf
1� m2f

; Q16 ¼ Q26 ¼ 0; Q66 ¼
Ef

2ð1þ mfÞ
ð14Þ
where Ef is also given in detail in Eq. (4), and varies in the thickness direction.
All four edges are assumed to be simply supported. Depending upon the in-plane behavior at the edges,

two cases, Case 1 (referred to herein as movable edges) and Case 2 (referred to herein as immovable edges),
will be considered. These correspond to the case when the motion of the unloaded edges in the plane tan-
gent to the plate structure�s mid-surface, normal to the respective edge is either unrestrained or completely
restrained, respectively. As a result, we have

Case (1): The edges are simply supported and freely movable in the in-plane directions. In addition the
plate is subjected to uniaxial compressive edge loads.

Case (2): All four edges are simply supported. Uniaxial edge loads are acting in the X-direction. The edges
X = 0, a are considered freely movable (in the in-plane direction), the remaining two edges being
unloaded and immovable (i.e. prevented from moving in the Y-direction).

For both cases the associated boundary conditions could be found in Librescu and Stein (1991) and Shen
and Zhang (1988). In the present paper, they are

X = 0, a:
W ¼ Wy ¼ 0 ð15aÞ

Nxy ¼ 0; Mx ¼ Px ¼ 0 ð15bÞZ b

0

Nx dY þ P ¼ 0 ð15cÞ
Y = 0, b:
W ¼ Wx ¼ 0 ð15dÞ

Nxy ¼ 0; My ¼ Py ¼ 0 ð15eÞZ a

0

Ny dX ¼ 0 ðmovable edgesÞ ð15fÞ

V ¼ 0 ðimmovable edgesÞ ð15gÞ
where P is a compressive edge load in the X-direction, Mx and My are the bending moments and Px and Py
are the higher order moments as defined in Reddy (1984a,b).
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Note that Eqs. (15c) and (15f) are satisfied in an average sense. As pointed out by Cui and Dowell (1983),
two types of membrane boundary conditions, i.e. Nx and Ny in an average sense and point-wise along the
boundary, do not have a strong influence on the buckling deflection.
The condition expressing the immovability condition V ¼ 0 (on Y = 0, b) is also fulfilled on the average

sense as (Shen, 2001, 2002)
Z a

0

Z b

0
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dY dX ¼ 0 ð16Þ
This condition in conjunction with Eq. (17b) below provides the compressive stresses acting on the edges
Y = 0, b.
The average end-shortening relationships are
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where Dx and Dy are plate end-shortening displacements in the X- and Y-directions.
In the above equations and what follows, the reduced stiffness matrices [A�

ij], [B
�
ij], [D

�
ij], [E

�
ij], [F

�
ij] and

[H �
ij] (i,j = 1,2,6) are functions of temperature and position, determined through relationships (Shen,

2001, 2002)
A� ¼ A�1;B� ¼ �A�1B;D� ¼ D� BA�1B;E� ¼ �A�1E;F� ¼ F� EA�1B;H� ¼ H� EA�1E ð18aÞ
where Aij,Bij etc., are the plate stiffnesses, defined by
ðAij;Bij;Dij;Eij; F ij;HijÞ ¼
X
k¼1

Z tk

tk�1

ðQijÞkð1; Z; Z2; Z3; Z4; Z6ÞdZ ði; j ¼ 1; 2; 6Þ ð18bÞ
It is evident that the above equations involve the stretching/bending coupling, as predicted by Bij and Eij.
As argued previously, even for an FGM plate with all four edges simply supported, no bifurcation buckling
could occur. For this reason, we consider here geometrically mid-plane symmetric FGM plates with fully
covered or embedded piezoelectric actuators. In such a case, the stretching/bending coupling is zero-valued,
i.e. Bij = Eij = 0. As a result, eL14 ¼ eL15 ¼ eL22 ¼ eL23 ¼ eL24 ¼ eL34 ¼ eL35 ¼ eL44 ¼ eL45 ¼ 0.
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3. Analytical method and asymptotic solutions

Having developed the theory, we will try to solve Eqs. (5)–(8) with boundary condition (15). Before pro-
ceeding, it is convenient first to define the following dimensionless quantities (with cijk in Eq. (25) below are
defined as in Shen (2002))
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The nonlinear Eqs. (5)–(8) may then be written in dimensionless form as
L11ðW Þ � L12ðWxÞ � L13ðWyÞ ¼ c14b
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The boundary conditions expressed by Eq. (15) become
x = 0, p:
W ¼ Wy ¼ 0 ð26aÞ

F ;xy ¼ Mx ¼ Px ¼ 0 ð26bÞ

1

p

Z p

0

b2
o
2F
oy2

dy þ 4kxb2 ¼ 0 ð26cÞ
y = 0, p:
W ¼ Wx ¼ 0 ð26dÞ

F ;xy ¼ My ¼ Py ¼ 0 ð26eÞZ p

0

o
2F
ox2

dx ¼ 0 ðmovable edgesÞ ð26fÞ

dy ¼ 0 ðimmovable edgesÞ ð26gÞ
and the unit end-shortening relationships become
dx ¼ � 1

4p2b2c24

Z p

0

Z p

0

c224b
2 o

2F
oy2

� c5
o
2F
ox2

� 1
2

c24
oW
ox

� �2
� c24

oW
ox

oW �

ox

" #(

þðc224cT1 � c5cT2ÞDT þ ðc224cP1 � c5cP2ÞDV
)
dxdy ð27aÞ

dy ¼ � 1

4p2b2c24

Z p

0

Z p

0

o
2F
ox2

� c5b
2 o

2F
oy2

� 1
2

c24b
2 oW

oy

� �2
� c24b

2 oW
oy

oW �

oy

" #(

þðcT2 � c5cT1ÞDT þ ðcP2 � c5cP1ÞDV
)
dy dx ð27bÞ



6110 H.-S. Shen / International Journal of Solids and Structures 42 (2005) 6101–6121
It is noted that Eqs. (21)–(24) are identical in form to those of symmetric cross-ply laminated plates
under mechanical loading. By virtue of the fact that DV and DT are assumed to be uniform, the ther-
mo-piezoelectric coupling in Eqs. (5)–(8) vanishes, but terms in DV and DT intervene in Eq. (27).
Applying Eqs. (21)–(27), the compressive postbuckling behavior of perfect and imperfect, FGM hybrid

plates with piezoelectric actuators under thermo-electro-mechanical loadings is now determined by means
of a two step perturbation technique, for which the small perturbation parameter has no physical meaning
at the first step, and is then replaced by a dimensionless deflection at the second step. The essence of this
procedure, in the present case, is to assume that
W ðx; y; eÞ ¼
X
j¼1

e jwjðx; yÞ; F ðx; y; eÞ ¼
X
j¼0

e jfjðx; yÞ;

Wxðx; y; eÞ ¼
X
j¼1

e jwxjðx; yÞ; Wyðx; y; eÞ ¼
X
j¼1

e jwyjðx; yÞ
ð28Þ
where e is a small perturbation parameter and the first term of wj (x, y) is assumed to have the form
w1ðx; yÞ ¼ Að1Þ
11 sinmx sin ny ð29Þ
and the initial geometric imperfection is assumed to have a similar form
W �ðx; y; eÞ ¼ ea�11 sinmx sin ny ¼ elAð1Þ
11 sinmx sin ny ð30Þ
where l ¼ a�11=A
ð1Þ
11 is the imperfection parameter.

Substituting Eq. (28) into Eqs. (21)–(24) and collecting the terms of the same order of e, a set of pertur-
bation equations is obtained. By using Eqs. (29) and (30) to solve these perturbation equations of each
order, the amplitudes of the terms wj(x,y), fj(x,y), wxj(x,y) and wyj(x,y) are determined step by step. As
a result, up to fourth-order asymptotic solutions can be obtained.
W ¼ e½Að1Þ
11 sinmx sin ny� þ e3½Að3Þ

13 sinmx sin 3ny þ A
ð3Þ
31 sin 3mx sin ny� þOðe5Þ ð31Þ

F ¼� Bð0Þ
00

y2

2
� bð0Þ00

x2

2
þ e2 �Bð2Þ

00

y2

2
� bð2Þ00

x2

2
þ Bð2Þ

20 cos 2mxþ B
ð2Þ
02 cos 2ny

� �
þ e4 �Bð4Þ

00

y2

2
� bð4Þ00

x2

2
þ Bð4Þ

20 cos 2mxþ B
ð4Þ
02 cos 2ny þ B

ð4Þ
22 cos 2mx cos 2ny þ B

ð4Þ
40 cos 4mx

�
þBð4Þ

04 cos 4ny þ B
ð4Þ
24 cos 2mx cos 4ny þ B

ð4Þ
42 cos 4mx cos 2ny

�
þOðe5Þ ð32Þ

Wx ¼ e½Cð1Þ
11 cosmx sin ny� þ e3½Cð3Þ

13 cosmx sin 3ny þ C
ð3Þ
31 cos 3mx sin ny� þOðe5Þ ð33Þ

Wy ¼ e½Dð1Þ
11 sinmx cos ny� þ e3½Dð3Þ

13 sinmx cos 3ny þ D
ð3Þ
31 sin 3mx cos ny� þOðe5Þ ð34Þ
It is mentioned that all coefficients in Eqs. (31)–(34) are related and can be expressed in terms of Að1Þ
11 but,

for the sake of brevity, the detailed expressions are not shown.
Next, upon substitution of Eqs. (31)–(34) into the boundary conditions (26c) and (27a), the postbuckling

equilibrium path can be written as
kx ¼ kð0Þ
x þ kð2Þ

x W
2
m þ kð4Þ

x W
4
m þ 	 	 	 ð35Þ
and
dx ¼ dð0Þ
x þ dð2Þ

x W
2
m þ dð4Þ

x W
4
m þ 	 	 	 ð36Þ



H.-S. Shen / International Journal of Solids and Structures 42 (2005) 6101–6121 6111
in which Wm is the dimensionless form of maximum deflection, which is assumed to be at the point
(x,y) = (p/2m,p/2n) and kðiÞ

x and dðiÞ
x (i = 0,2,4, . . .) are given in detail in Appendix A.

Eqs. (35) and (36) can be employed to obtain numerical results for the postbuckling load–deflection or
load-end-shortening curves of simply supported shear deformable FGM plates with piezoelectric actuators
subjected to uniaxial compression combined with thermal and electric loads. From Appendix A, the buck-
ling load of a perfect plate can readily be obtained numerically, by setting l = 0 (or W

�
=t ¼ 0), while taking

Wm = 0 (or W =t ¼ 0). In such a case, the minimum buckling load is determined by applying Eq. (35) for
various values of the buckling mode (m,n), which determine the number of half-waves in the X- and Y-
directions.
4. Numerical results and discussions

To study the thermo-piezoelectric effects on the postbuckling behavior of FGM hybrid plates under uni-
axial compression, several numerical examples were solved for perfect and imperfect, (P/FGM)S and
(FGM/P)S plates. Two sets of material mixture for FGMs are considered. One is silicon nitride and stain-
less steel, referred to as Si3N4/SUS304, and the other is zirconium oxide and titanium alloy, referred to as
ZrO2/Ti–6Al–4V. However, the analysis is equally applicable to other types of FGMs as well. The material
properties Pf, such as Young�s modulus Ef and thermal expansion coefficient af, can be expressed as a non-
linear function of temperature as (Touloukian, 1967)
Table
Tempe

Materi

Zircon

Silicon

Ti–6A

Stainle
P f ¼ P 0ðP�1T�1 þ 1þ P 1T þ P 2T 2 þ P 3T 3Þ ð37Þ

in which T = T0 + DT, and T0 = 300 K. P0, P�1, P1, P2 and P3 are the coefficients of temperature T (K) and
are unique to the constituent materials. Typical values for Young�s modulus Ef (in Pa) and thermal expan-
sion coefficient af (in/K) of these materials are listed in Table 1 (from Reddy and Chin, 1998). Poisson�s
ratio mf is assumed to be a constant, and mf = 0.28. PZT-5A is selected for the piezoelectric layers. The mate-
rial properties of which are assumed to be linear functions of temperature change, i.e.
E11ðT Þ ¼ E110ð1þ E111DT Þ; E22ðT Þ ¼ E220ð1þ E221DT Þ

G12ðT Þ ¼ G120ð1þ G121DT Þ; G13ðT Þ ¼ G130ð1þ G131DT Þ; G23ðT Þ ¼ G230ð1þ G231DT Þ

a11ðT Þ ¼ a110ð1þ a111DT Þ; a22ðT Þ ¼ a220ð1þ a221DT Þ

ð38Þ
where E110, E220, G120, G130, G230, a110, a220, E111, E221, G121, G131, G231, a111, a221 are constants. Typical
values adopted, as given in Oh et al. (2000), E110 = E220 = 61 GPa, G120 = G130 = G230 = 24.2 GPa,
1
rature-dependent coefficients for ceramics and metals, from Reddy and Chin (1998)

als P0 P�1 P1 P2 P3

ia Ef 244.27e+9 0 �1.371e�3 1.214e�6 �3.681e�10
af 12.766e�6 0 �1.491e�3 1.006e�5 �6.778e�11

nitride Ef 348.43e+9 0 �3.070e�4 2.160e�7 �8.946e�11
af 5.8723e�6 0 9.095e�4 0 0

l–4V Ef 122.56e+9 0 �4.586e�4 0 0
af 7.5788e�6 0 6.638e�4 �3.147e�6 0

ss steel Ef 201.04e+9 0 3.079e�4 �6.534e�7 0
af 12.330e�6 0 8.086e�4 0 0
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m12 = 0.3, a110 = a220 = 0.9 · 10�6/K and d31 = d32 = 2.54 · 10�10 m/V; and E111 = �0.0005,
E221 = G121 = G131 = G231 = �0.0002, a111 = a221 = 0.0005.
0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5
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isotropic thin plate (   = 0.326)
= 1.0, (m, n) = (1, 1)

P
x 
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W /t

Present, W/t = 0

Present, W*/t = 0.1
Theoritical (Dym, 1974)
Experiments (Yamaki, 1961)

ν
β

*

Fig. 2. Comparisons of postbuckling load–deflection curves for isotropic thin plates under uniaxial compression.

Table 2
Comparisons of buckling loads Pcr (kN) for uniaxial compressed, (P/FGM)S plates with a substrate made of Si3N4/SUS304 and with
unloaded edges immovable under uniform temperature rise and three sets of electrical loading conditions (b/t = 20, a/b = 1.0,
T0 = 300 K)

DT VU = VL N = 0 N = 0.2 N = 0.5 N = 1.0 N = 2.0 N = 5.0

(P/FGM)S, TID, (m, n) = (1,1)
0 K �500 V 115.2026 131.6953 146.1075 157.9360 166.5642 171.3940

0 V 114.6376 131.1302 145.5423 157.3708 165.9990 170.8288
+500 V 114.0725 130.5651 144.9771 156.8056 165.4337 170.2635

100 K �500 V 93.3042 109.9468 124.9499 137.6636 147.3829 153.4537
0 V 92.7391 109.3817 124.3848 137.0984 146.8177 152.8885
+500 V 92.1741 108.8166 123.8196 136.5332 146.2524 152.3232

200 K �500 V 71.4058 88.1983 103.7924 117.3912 128.2016 135.5134
0 V 70.8407 87.6332 103.2272 116.8260 127.6364 134.9482
+500 V 70.2757 87.0681 102.6621 116.2608 127.0711 134.3829

(P/FGM)S, TD-F, (m, n) = (1,1)
100 K �500 V 90.7119 106.8642 121.4538 133.8422 143.3414 149.3148

0 V 90.1468 106.2991 120.8886 133.2770 142.7762 148.7495
+500 V 89.5818 105.7340 120.3235 132.7118 142.2110 148.1842

200 K �500 V 63.4408 79.6302 94.7616 108.0310 118.6513 125.9229
0 V 62.8758 79.0652 94.1965 107.4658 118.0861 125.3576
+500 V 62.3107 78.5001 93.6314 106.9006 117.5209 124.7924

(P/FGM)S, TD, (m, n) = (1,1)
100 K �500 V 90.4283 106.5790 121.1672 133.5544 143.0529 149.0257

0 V 89.8680 106.0187 120.6067 132.9939 142.4923 148.4651
+500 V 89.3077 105.4583 120.0463 132.4334 141.9318 147.9045

200 K �500 V 62.8991 79.0828 94.2088 107.4735 118.0899 125.3583
0 V 62.3435 78.5270 93.6530 106.9176 117.5339 124.8023
+500 V 61.7878 77.9712 93.0971 106.3616 116.9779 124.2462
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The accuracy and effectiveness of the present method for the buckling and postbuckling analyses of iso-
tropic and/or symmetric cross-ply laminated plates subjected to uniaxial compression were examined by
many comparison studies given in Shen (1998, 2000a,b,c, 2001) and Shen and Zhang (1988). In addition,
the postbuckling load–deflection curves for perfect and imperfect, isotropic thin square plates (m = 0.326)
subjected to uniaxial compression are compared in Fig. 2 with the analytical solutions of Dym (1974)
and the experimental results of Yamaki (1961). These comparisons show that the results from the present
method are in good agreement with the existing results, thus verifying the reliability and accuracy of the
present method.
A parametric study has been carried out and typical results are shown in Tables 2–7 and Figs. 3–8. For

these examples, the plate geometric parameter a/b = 1, b/t = 20 and 40, and the thickness of the FGM layer
tf = 1 mm whereas the thickness of piezoelectric layers tp = 0.1 mm, so that the total thickness of the plate
t = 2.2 mm. It should be appreciated that in all figures W

�
=t ¼ 0.1 denotes the dimensionless maximum ini-

tial geometric imperfection of the plate.
Tables 2–5 present the buckling loads Pcr (in kN) for perfect, moderately thick (b/t = 20), (P/FGM)S and

(FGM/P)S hybrid laminated plates with unloaded edges immovable and with different values of the volume
fraction index N (=0.0, 0.2, 0.5, 1.0, 2.0 and 5.0) subjected to uniaxial compression under three sets of tem-
perature rise (DT = 0, 100, 200 K). Here, TD represents material properties for both substrate FGM layer
Table 3
Comparisons of buckling loads Pcr (kN) for uniaxial compressed, (FGM/P)S plates with a substrate made of Si3N4/SUS304 and with
unloaded edges immovable under uniform temperature rise and three sets of electrical loading conditions (b/t = 20, a/b = 1.0,
T0 = 300 K)

DT VM N = 0 N = 0.2 N = 0.5 N = 1.0 N = 2.0 N = 5.0

(FGM/P)S, TID, (m, n) = (1,1)
0 K �500 V 138.5191 159.3017 177.6971 193.1219 204.8333 212.0199

0 V 137.9540 158.7366 177.1320 192.5568 204.2680 211.4547
+500 V 137.3889 158.1714 176.5668 191.9915 203.7028 210.8894

100 K �500 V 116.6206 137.5532 156.5396 172.8495 185.6520 194.0796
0 V 116.0556 136.9881 155.9744 172.2843 185.0867 193.5144
+500 V 115.4905 136.4229 155.4093 171.7191 184.5215 192.9491

200 K �500 V 94.7222 115.8047 135.3821 152.5771 166.4707 176.1393
0 V 94.1571 115.2396 134.8169 152.0119 165.9054 175.5741
+500 V 93.5921 114.6745 134.2518 151.4467 165.3402 175.0088

(FGM/P)S, TD-F, (m, n) = (1,1)
100 K �500 V 113.5414 133.8505 152.2997 168.1724 180.6583 188.9140

0 V 112.9764 133.2854 151.7345 167.6072 180.0931 188.3488
+500 V 112.4113 132.7203 151.1694 167.0420 179.5278 187.7835

200 K �500 V 85.3580 105.6978 124.6823 141.4299 155.0314 164.5812
0 V 84.7929 105.1327 124.1171 140.8647 154.4662 164.0159
+500 V 84.2279 104.5676 123.5520 140.2995 153.9010 163.4507

(FGM/P)S, TD, (m, n) = (1,1)
100 K �500 V 113.5180 133.8241 152.2709 168.1422 180.6273 188.8832

0 V 112.9577 133.2637 151.7105 167.5817 180.0668 188.3226
+500 V 112.3974 132.7033 151.1500 167.0212 179.5062 187.7620

200 K �500 V 85.3354 105.6667 124.6441 141.3861 154.9840 164.5320
0 V 84.7797 105.1109 124.0882 140.8302 154.4280 163.9759
+500 V 84.2241 104.5552 123.5323 140.2742 153.8719 163.4198
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and piezoelectric layers are temperature-dependent. TD-F represents material properties of substrate FGM
layer are temperature-dependent but material properties of piezoelectric layers are temperature-indepen-
dent, i.e. E111 = E221 = G121 = G131 = G231 = a111 = a221 = 0 in Eq. (38). TID represents material properties
for both piezoelectric layers and substrate FGM layer are temperature-independent, i.e. in a fixed temper-
ature T0 = 300 K for FGM layer, as previously used in Yang and Shen (2003). The control voltages with
the same sign are also applied to the upper, lower or middle piezoelectric layers, and are referred to as VU,
VL and VM. Three electrical loading cases are considered. Here VU = VL = 0 V (or VM = 0 V) implies that
the buckling occurs under a grounding condition. Two kinds of substrate FGM layers, i.e. Si3N4/SUS304
and ZrO2/Ti–6Al–4V are considered. It can be found that the buckling load of (P/FGM)S plate is lower
than that of (FGM/P)S plate. It can be seen that, for the hybrid plates with Si3N4/SUS304 substrate, a fully
metallic plate (N = 0) has lowest buckling load and that the buckling load increases as the volume fraction
index N increases. This is expected because the metallic plate has a lower stiffness than the ceramic plate. It
is found that the increase is about +65% for the (P/FGM)S plate, and about +67% for the (FGM/P)S one,
from N = 0 to N = 5, under temperature change DT = 100 K. It can also be seen that the temperature re-
duces the buckling load when the temperature dependency is put into consideration. The percentage de-
crease is about �14% for the (P/FGM)S plate and about �12% for the (FGM/P)S one from
temperature changes from DT = 0 K to DT = 100 K under the same volume fraction distribution N = 2.
Table 4
Comparisons of buckling loads Pcr (kN) for uniaxial compressed, (P/FGM)S plates with a substrate made of ZrO2/Ti–6Al–4V and
with unloaded edges immovable under uniform temperature rise and three sets of electrical loading conditions (b/t = 20, a/b = 1.0,
T0 = 300 K)

DT VU = VL N = 0 N = 0.2 N = 0.5 N = 1.0 N = 2.0 N = 5.0

(P/FGM)S, TID, (m, n) = (1,1)
0 K �500 V 64.0000 72.9739 80.8184 87.2604 91.9643 94.6043

0 V 63.4356 72.4094 80.2538 86.6957 91.3996 94.0395
+500 V 62.8712 71.8449 79.6892 86.1310 90.8348 93.4747

100 K �500 V 57.5279 64.4956 70.0364 73.9762 76.0389 75.9364
0 V 56.9635 63.9311 69.4718 73.4115 75.4741 75.3716
+500 V 56.3991 63.3666 68.9072 72.8468 74.9094 74.8068

200 K �500 V 51.0557 56.0172 59.2544 60.6920 60.1135 57.2686
0 V 50.4913 55.4527 58.6898 60.1273 59.5487 56.7037
+500 V 49.9269 54.8882 58.1252 59.5626 58.9839 56.1389

(P/FGM)S, TD-F, (m, n) = (1,1)
100 K �500 V 54.8204 59.5851 62.9913 64.9500 65.2654 63.7199

0 V 54.2561 59.0207 62.4268 64.3854 64.7007 63.1551
+500 V 53.6917 58.4563 61.8623 63.8208 64.1360 62.5904

200 K �500 V 45.9786 45.1848 42.4283 37.8905 31.5562 23.3350
0 V 45.4144 44.6205 41.8639 37.3260 30.9916 22.7704
+500 V 44.8502 44.0561 41.2995 36.7615 30.4270 22.2057

(P/FGM)S, TD, (m, n) = (1,1)
100 K �500 V 54.5302 59.2967 62.7049 64.6657 64.9834 63.4404

0 V 53.9709 58.7372 62.1453 64.1060 64.4237 62.8805
+500 V 53.4117 58.1778 61.5857 63.5464 63.8639 62.3206

200 K �500 V 45.4104 44.6291 41.8861 37.3619 31.0410 22.8328
0 V 44.8561 44.0746 41.3314 36.8071 30.4860 22.2777
+500 V 44.3018 43.5201 40.7768 36.2523 29.9311 21.7227
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Also the buckling loads under TD-F and TD cases are very close under the same volume fraction distribu-
tion and the same temperature change. In contrast, for the ZrO2/Ti–6Al–4V hybrid laminated plate, the
buckling load is lower than that of the Si3N4/SUS304 hybrid laminated plate and erratic behavior can
be observed in thermal loading conditions DT = 100 K and 200 K. Therefore, only Si3N4/SUS304 hybrid
laminated plate under TD case is considered in the postbuckling studies (in Figs. 3–8). It can also be seen
that the control voltage has a very small effect on the buckling loads for hybrid laminated plates, this is
because the piezoelectric layer is much thinner than the FGM substrate. Very high voltages will be able
to influence the buckling response of the hybrid laminated plate. However, such high voltages cannot be
applied, because they lead to a breakdown in the material properties.
Then Tables 6 and 7 present the buckling loads Pcr for the same two types of hybrid plates with unloaded

edges movable subjected to uniaxial compression under three sets of temperature rise (DT = 0, 100, 200 K).
The results show that the buckling load is decreased with increase in temperature, but is increased as vol-
ume fraction index N increases at the same temperature. The numerical results also confirm that the control
voltage has no effect on the buckling loads of hybrid laminated plates when the unloaded edges are
movable.
Figs. 3 and 4 give, respectively, the postbuckling load–deflection and load–shortening curves for (P/

FGM)S and (FGM/P)S hybrid laminated plates (b/t = 40, N = 0.2) with unloaded edges immovable
Table 5
Comparisons of buckling loads Pcr (kN) for uniaxial compressed, (FGM/P)S plates with a substrate made of ZrO2/Ti–6Al–4V and
with unloaded edges immovable under uniform temperature rise and three sets of electrical loading conditions (b/t = 20, a/b = 1.0,
T0 = 300 K)

DT VM N = 0 N = 0.2 N = 0.5 N = 1.0 N = 2.0 N = 5.0

(FGM/P)S, TID, (m, n) = (1,1)
0 K �500 V 70.7813 82.1124 92.1400 100.5459 106.9247 110.8339

0 V 70.2169 81.5479 91.5754 99.9812 106.3599 110.2691
+500 V 69.6525 80.9834 91.0108 99.4165 105.7951 109.7042

100 K �500 V 64.3091 73.6340 81.3580 87.2617 90.9992 92.1660
0 V 63.7448 73.0695 80.7934 86.6970 90.4345 91.6012
+500 V 63.1804 72.5050 80.2288 86.1323 89.8697 91.0364

200 K �500 V 57.8370 65.1557 70.5760 73.9775 75.0738 73.4981
0 V 57.2726 64.5912 70.0113 73.4128 74.5090 72.9333
+500 V 56.7082 64.0267 69.4467 72.8481 73.9443 72.3685

(FGM/P)S, TD-F, (m, n) = (1,1)
100 K �500 V 60.6917 67.4217 72.6482 76.2438 77.9534 77.4619

0 V 60.1274 66.8572 72.0837 75.6792 77.3888 76.8972
+500 V 59.5631 66.2928 71.5192 75.1146 76.8241 76.3325

200 K �500 V 50.9401 51.8613 50.6936 47.5837 42.4644 35.1598
0 V 50.3759 51.2970 50.1292 47.0192 41.8998 34.5951
+500 V 49.8116 50.7327 49.5647 46.4547 41.3352 34.0305

(FGM/P)S, TD, (m, n) = (1,1)
100 K �500 V 60.6634 67.3937 72.6214 76.2187 77.9306 77.4421

0 V 60.1041 66.8343 72.0618 75.6590 77.3708 76.8822
+500 V 59.5448 66.2749 71.5022 75.0993 76.8111 76.3223

200 K �500 V 50.8947 51.8260 50.6700 47.5728 42.4668 35.1762
0 V 50.3404 51.2715 50.1153 47.0180 41.9118 34.6211
+500 V 49.7861 50.7170 49.5606 46.4632 41.3569 34.0661
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subjected to uniaxial compression and three sets of electrical loading, VU = VL (or VM) = �500, 0, +500 V,
and under DT = 0 and 100 K. It is evident that the buckling loads reduce as the temperature increases, and
the postbuckling path becomes lower. It can be found that the control voltage has a small effect on the post-
buckling behavior of the plate. It can be seen that minus control voltages increase the buckling load and
decrease the postbuckled deflection at the same temperature rise, whereas the plus control voltages decrease
the buckling load and induce more large postbuckled deflections.
Figs. 5 and 6 show the effect of the volume fraction index N (=0.2, 1.0 and 5.0) on the postbuckling

behavior of (P/FGM)S and (FGM/P)S hybrid laminated plates (b/t = 40) with unloaded edges immovable
subjected to uniaxial compression and three sets of electrical loading, and under DT = 100 K. It can be seen
that the increase of the volume fraction index N yields an increase of the buckling load and postbuckling
strength.
Table 6
Comparisons of buckling loads Pcr (kN) for uniaxial compressed, Si3N4/SUS304 plates with piezoelectric actuators and with unloaded
edges movable subjected to temperature rise (b/t = 20, a/b = 1.0, T0 = 300 K)

DT (K) N = 0.0 N = 0.2 N = 0.5 N = 1.0 N = 2.0 N = 5.0

(P/FGM)S, (m, n) = (1,1)
TID 146.8044 167.9184 186.3678 201.5086 212.5516 218.7312

TD-FGM 100 144.8755 165.3297 183.2028 197.8707 208.5686 214.5550
200 141.2601 161.6779 179.5191 194.1613 204.8411 210.8181

TD 100 144.5326 164.9874 182.8609 197.5289 208.2266 214.2126
200 140.5758 160.9947 178.8367 193.4790 204.1585 210.1347

(FGM/P)S, (m, n) = (1,1)
TID 176.6633 203.2696 226.8185 246.5632 261.5528 270.7491

TD-FGM 100 174.1111 199.8871 222.7014 241.8298 256.3509 265.2588
200 169.3277 195.0592 217.8333 236.9282 251.4242 260.3173

TD 100 174.1070 199.8824 222.6962 341.8245 256.3456 265.2538
200 169.3195 195.0497 217.8229 236.9173 251.4135 260.3075

Table 7
Comparisons of buckling loads Pcr (kN) for uniaxial compressed, ZrO2/Ti–6Al–4V plates with piezoelectric actuators and with
unloaded edges movable subjected to temperature rise temperature rise (b/t = 20, a/b = 1.0, T0 = 300 K)

DT (K) N = 0.0 N = 0.2 N = 0.5 N = 1.0 N = 2.0 N = 5.0

(P/FGM)S, (m, n) = (1,1)
TID 81.2698 92.7595 102.8020 111.0477 117.0674 120.4437

TD-FGM 100 77.6612 87.2275 95.5896 102.4555 107.4673 110.2784
200 74.0524 82.3901 89.6789 95.6635 100.0321 102.4828

TD 100 77.3189 86.8857 95.2482 102.1141 107.1257 109.9364
200 73.3692 81.7080 88.9973 94.9821 99.3503 101.8001

(FGM/P)S, (m, n) = (1,1)
TID 89.9576 104.4662 117.3045 128.0650 136.2290 141.2302

TD-FGM 100 85.1835 97.2669 107.9604 116.9225 123.7195 127.8799
200 80.4093 90.9440 100.2675 108.0808 114.0052 117.6293

TD 100 85.1797 97.2626 107.9557 116.9175 123.7146 127.8754
200 80.4018 90.9355 100.2582 108.0712 113.9956 117.6204
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Figs. 7 and 8 show the effect of temperature rise DT (=0, 100, and 200 K) on the postbuckling behavior
of (P/FGM)S and (FGM/P)S hybrid laminated plates (b/t = 40) with unloaded edges movable and with
N = 0.2 and 2.0 subjected to uniaxial compression. It can be seen that both buckling load and postbuckling
strength are decreased with increase in temperature. It can also be seen that the buckling load of hybrid
laminated plates with immovable unloaded edges is lower than that of the plate with movable unloaded
edges under the same loading conditions, compare Figs. 3 and 7, and Figs. 4 and 8. In contrast, the post-
buckling load carrying capacity of the plate with immovable unloaded edges is larger than that of the plate
with movable unloaded edges when the deflection W is sufficiently large.
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5. Concluding remarks

To study the effects of temperature dependency, temperature rise and control voltage on the postbuck-
ling behavior of FGM hybrid laminated plates, a fully nonlinear postbuckling analysis has been presented.
Numerical calculations have been made for mid-plane symmetric FGM plates with fully covered or embed-
ded piezoelectric actuators under different sets of thermal and electrical loading conditions. The results
show that the plate has lower buckling load and postbuckling paths when the temperature-dependent prop-
erties are taken into account. The results reveal that the temperature rise and the volume fraction distribu-
tion of FGMs layers have a significant effect on the buckling load and postbuckling behavior of FGM



0 1 2 3
0

50

100

150

200

250

II

I
 I: N = 0.2
II: N = 2.0

321

 1: ∆T = 0 K 
 2: ∆T = 100 K
 3: ∆T = 200 K

(P/FGM)S

T0 = 300 K
β = 1.0, b/t = 40 
(m, n)=(1, 1)

(P/FGM)S

T0 = 300 K
β = 1.0, b/t = 40 
(m, n)=(1, 1)

movable edges

P
x 

 (
kN

)

P
x 

 (
kN

)

W   (mm)

  W
*
/t = 0.0

  W
*
/t = 0.1

-0.4 -0.2 0.0 0.2 0.4 0.6
0

50

100

150

200

250

II

I

II

I

II

I
 I: N = 0.2
II: N = 2.0

3

2

1

 1: ∆T = 0 K 
 2: ∆T = 100 K
 3: ∆T = 200 K

movable edges

  W
*
/t = 0.0

  W
*
/t = 0.1

∆x (mm)

(a) (b)
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hybrid laminated plates. In contrast, the control voltage only has a small effect on the buckling load and
postbuckling behavior of FGM hybrid laminated plates with immovable unloaded edges, and it has almost
no effect on the buckling load and postbuckling behavior of FGM hybrid laminated plates with movable
unloaded edges. As a result, buckling control is hardly carried out for moderately thick hybrid laminated
plates.
It is hoped that the results reported herein will contribute to a better understanding of the postbuckling

behavior for FGM hybrid laminated plates under thermo-electro-mechanical loadings.
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Appendix A

In Eqs. (35) and (36)
ðkð0Þ
x ; kð2Þ

x ; kð4Þ
x Þ ¼ 1

4b2c14C11
ðS0; S2; S4Þ; dð0Þ

x ¼ C00kx � dPx ;

dð2Þ
x ¼ 1

32b2
C11ð1þ 2lÞ; dð4Þ

x ¼ 1

256b2
c14c24C

2
11

m4

J 13c224
þ n

4b4

J 31

� �
ð1þ lÞ2ð1þ 2lÞ2

ðA:1Þ
in which (with g08, g138 and g318 are defined as in Shen (2002))
S0 ¼
H11

ð1þ lÞ � S
P
0 ; S2 ¼

1

16
c14c24H2ð1þ 2lÞ; S4 ¼

1

256
c214c

2
24C11ðC24 � C44Þ;

H11 ¼ g08; H13 ¼ g138; H31 ¼ g318

H2 ¼
m4

c224
þ n4b4 þ C22

� �
; C24 ¼ 2ð1þ lÞ2ð1þ 2lÞ2H2

m4

J 13c224
þ n

4b4

J 31

� �
;

C44 ¼ ð1þ lÞð1þ 2lÞ 2ð1þ lÞ2 þ ð1þ 2lÞ
h i m8

J 13c424
þ n

8b8

J 31

� �
J 13 ¼ H13C11ð1þ lÞ � H11C13 þ JP ; J 31 ¼ H31C11ð1þ lÞ � H11C31 � JP

ðA:2Þ
in the above equations, for the case of four edges movable
C00 ¼ c24; C11 ¼ C13 ¼ m2; C31 ¼ 9m2; C22 ¼ 0; SP0 ¼ JP ¼ 0;

dPx ¼
1

4b2c24
½ðc224cT1 � c5cT2ÞDT þ ðc224cP1 � c5cP2ÞDV �

ðA:3Þ
and for the case of unloaded edges immovable
C00 ¼
1

c24
ðc224 � c25Þ

C11 ¼ m2 þ c5n
2b2; C13 ¼ m2 þ 9c5n2b2; C31 ¼ 9m2 þ c5n

2b2; C22 ¼ 2n4b4;
SP0 ¼ c14n

2b2½ðcT2 � c5cT1ÞDT þ ðcP2 � c5cP1ÞDV �;

dPx ¼
C00
4b2

ðcT1DT þ cP1DV Þ;

JP ¼ 8c14m2n2b2ð1þ lÞ½ðcT2 � c5cT1ÞDT þ ðcP2 � c5cP1ÞDV �.

ðA:4Þ
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